Topic for open discussion is the contents of the
paper/presentation: Unsteady
Aerodynamic Analysis of Wind Harvesting Aircraft
Judd A. Mehr, Eduardo J. Alvarez, and Andrew Ning AIAA 2020-2761 Session: Propeller/Rotorcraft/Wind Turbine Aerodynamics I Published Online: 8 Jun 2020 https://doi.org/10.2514/6.2020-2761 Note: Pay-gated document, so far ... =============================
|
Send AWE notes and topic replies to editor@upperwindpower.com |
v? |
??post?? |
References for the paper: [1] Loyd, M. L., “Crosswind Kite Power,” Journal of Energy, Vol. 4, No. 3, 1980, pp. 106–111. [2] Cherubini, A., Papini, A., Vertechy, R., and Fontana, M., “Airborne Wind Energy Systems: A review of the technologies,”, 2015. doi:10.1016/j.rser.2015.07.053. [3] De Lellis, M., Reginatto, R., Saraiva, R., and Trofino, A., “The Betz limit applied to Airborne Wind Energy,” Renewable Energy, Vol. 127, 2018, pp. 32–40. doi:10.1016/j.renene.2018.04.034. [4] Kheiri, M., Saberi Nasrabad, V., and Bourgault, F., “A new perspective on the aerodynamic performance and power limit of crosswind kite systems,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 190, No. April, 2019, pp. 190–199. doi:10.1016/j.jweia.2019.04.010. [5] Folkersma, M., Schmehl, R., and Viré, A., “Boundary layer transition modeling on leading edge inflatable kite airfoils,” Wind Energy, Vol. 22, No. 7, 2019, pp. 908–921. doi:10.1002/we.2329. [6] Thedens, P., de Oliveira, G., and Schmehl, R., “Ram-air kite airfoil and reinforcements optimization for airborne wind energy applications,” Wind Energy, Vol. 22, No. 5, 2019, pp. 653–665. doi:10.1002/we.2313. [7] Fagiano, L., and Schnez, S., “On the take-off of airborne wind energy systems based on rigid wings,” Renewable Energy, Vol. 107, 2017, pp. 473–488. doi:10.1016/j.renene.2017.02.023. [8] Saeed, M., and Kim, M. H., “Aerodynamic performance analysis of an airborne wind turbine system with NREL Phase IV rotor,” Energy Conversion and Management, Vol. 134, 2017, pp. 278–289. doi:10.1016/j.enconman.2016.12.021, URL http://dx.doi.org/10.1016/j.enconman.2016.12.021. [9] Cobb, M., Deodhar, N., and Vermillion, C., “Lab-scale experimental characterization and dynamic scaling assessment for closed-loop crosswind flight of airborne wind energy systems,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, Vol. 140, No. 7, 2018, pp. 1–12. doi:10.1115/1.4038650. [10] Zanon, M., Gros, S., Andersson, J., and Diehl, M., “Airborne Wind Energy Based on Dual Airfoils,” IEEE Transactions on Control Systems Technology, Vol. 21, No. 4, 2013, pp. 1215–1222. [11] Zanon, M., Gros, S., Meyers, J., and Moritz, D., “Airborne Wind Energy : Airfoil-Airmass Interaction,” The International Federation of Automatic Control, Capte Town, South Africa, 2014, pp. 5814–5819. doi:10.3182/20140824-6-ZA-1003.00258. [12] Milutinović, M., Čorić, M., and Deur, J., “Operating cycle optimization for a Magnus effect-based airborne wind energy system,” Energy Conversion and Management, Vol. 90, 2015, pp. 154–165. doi:10.1016/j.enconman.2014.10.066. [13] Pavković, D., Cipek, M., Hrgetić, M., and Sedić, A., “Modeling, parameterization and damping optimum-based control system design for an airborne wind energy ground station power plant,” Energy Conversion and Management, Vol. 164, No. March, 2018, pp. 262–276. doi:10.1016/j.enconman.2018.02.090. [14] Mackertich, S., “Dynamic Modeling of Autorotation for Simultaneous Lift and Wind Energy Extraction,” Ph.D. thesis, University of Central Florida, 2016. [15] Archer, C. L., Delle Monache, L., and Rife, D. L., “Airborne wind energy: Optimal locations and variability,” Renewable Energy, Vol. 64, 2014, pp. 180–186. doi:10.1016/j.renene.2013.10.044, URL http://dx.doi.org/10.1016/j.renene. 2013.10.044. [16] Bechtle, P., Schelbergen, M., Schmehl, R., Zillmann, U., and Watson, S., “Airborne wind energy resource analysis,” Renewable Energy, Vol. 141, 2019, pp. 1103–1116. doi:10.1016/j.renene.2019.03.118, URL https://doi.org/10.1016/j.renene. 2019.03.118. [17] Sommerfeld, M., Crawford, C., Monahan, A., and Bastigkeit, I., “LiDAR-based characterization of mid-altitude wind conditions for airborne wind energy systems,” Wind Energy, Vol. 22, No. 8, 2019, pp. 1101–1120. doi:10.1002/we.2343. [18] Wijnja, J., Schmehl, R., De Breuker, R., Jensen, K., and Lind, D. V., “Aeroelastic analysis of a large airborne wind turbine,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 11, 2018, pp. 2374–2385. doi:10.2514/1.G001663. [19] Kheiri, M., Bourgault, F., Nasrabad, V. S., and Victor, S., “On the aerodynamic performance of crosswind kite power systems,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 181, No. April, 2018, pp. 1–13. doi:10.1016/j.jweia.2018.08.006. [20] Fasel, U., Keidel, D., Molinari, G., and Ermanni, P., “Aerostructural optimization of a morphing wing for airborne wind energy applications,” Smart Materials and Structures, Vol. 26, 2017. doi:https://doi.org/10.1088/1361-665X/aa7c87. [21] Fasel, U., Tiso, P., Keidel, D., Molinari, G., and Ermanni, P., “Reduced-Order Dynamic Model of a Morphing Airborne Wind Energy Aircraft,” AIAA Journal, Vol. 57, No. 8, 2019, pp. 3586–3598. doi:10.2514/1.j058019. [22] Saleem, A., and Kim, M. H., “Aerodynamic analysis of an airborne wind turbine with three different aerofoil-based buoyant shells using steady RANS simulations,” Energy Conversion and Management, Vol. 177, No. April, 2018, pp. 233–248. doi:10.1016/j.enconman.2018.09.067, URL https://doi.org/10.1016/j.enconman.2018.09.067. [23] Saeed, M., and Kim, M. H., “Airborne wind turbine shell behavior prediction under various wind conditions using strongly coupled fluid structure interaction formulation,” Energy Conversion and Management, Vol. 120, 2016, pp. 217–228. doi: 10.1016/j.enconman.2016.04.077, URL http://dx.doi.org/10.1016/j.enconman.2016.04.077. [24] Alvarez, E. J., and Ning, A., “Development of a Vortex Particle Code for the Modeling of Wake Interaction in Distributed Propulsion,” 2018 Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, 2018, pp. 1–22. doi:10.2514/6.2018-3646, URL https://arc.aiaa.org/doi/10.2514/6.2018-3646. [25] Alvarez, E., and Ning, A., “Modeling Multirotor Aerodynamic Interactions Through the Vortex Particle Method,” AIAA Aviation Forum, 2019, p. 3191. doi:10.2514/6.2019-2827, URL https://scholarsarchive.byu.edu/facpubhttps: //scholarsarchive.byu.edu/facpub/3191. [26] Alvarez, E. J., and Ning, A., “High-fidelity Modeling of Multirotor Aerodynamic Interactions for Aircraft Design,” AIAA Journal, 2020. (accepted). [27] Alvarez, E. J., “FLOWUnsteady Documentation: Development of an Unsteady Mixed-fidelity Aerodynamics Solver for Maneuvering Multirotor Aircraft,” , June 2020. URL https://github.com/byuflowlab/FLOWUnsteady. |