Topic Discuss contents of paper: A Review and Aspects of High Altitude Wind Power Generation SeePaper M. Uma Mahesh, Ayyarao SLV Tummala, and Ravikiran Inapakurthi International Conference on Trends and Advanced Research in Green Energy Technologies, ICTARGET-2017’, 30th & 31st March, 2017 |
Send AWE notes and topic replies to editor@upperwindpower.com |
Dec.
2,
2019
Joe Faust discussing the topic paper:
|
Reference stated for the paper: REFERENCES [1] J. Adhikari and S. K. Panda, “Generation and Transmission of Electrical Energy in High-Altitude Wind Power Generating System,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 2, pp. 459–470, Jun. 2015. [2] E. Lunney, M. Ban, N. Duic, and A. Foley, “A state-of-the-art review and feasibility analysis of high altitude wind power in Northern Ireland,” Renew. Sustain. Energy Rev., vol. 68, pp. 899–911, 2017. [3] A. Cherubini, A. Papini, R. Vertechy, and M. Fontana, “Airborne Wind Energy Systems: A review of the technologies,” Renew. Sustain. Energy Rev., vol. 51, pp. 1461–1476, 2015. [4] A. Millane, H. Hesse, T. A. Wood, and R. S. Smith, “Range-inertial estimation for airborne wind energy,” in Proceedings of the IEEE Conference on Decision and Control, 2016. [5] B. Lansdorp and W. J. Ockels, “Comparison of concepts for high-altitude wind energy generation with ground based generator,” in NRE 2005 Conference, 2005. [6] A. K. Mondal, S. Mondal, V. Devalla, P. Sharma, and M. K. Gupta, “Advances in floating aerogenerators: Present status and future,” Int. J. Precis. Eng. Manuf., vol. 17, no. 11, pp. 1555–1568, 2016. [7] I. Argatov and R. Silvennoinen, “Energy conversion efficiency of the pumping kite wind generator,” Renew. Energy, vol. 35, no. 5, pp. 1052–1060, 2010. [8] M. Canale, L. Fagiano, and M. Milanese, “Power kites for wind energy generation: Fast predictive control of tethered airfoils,” IEEE Control Syst. Mag., 2007. [9] M. Canale, L. Fagiano, M. Milanese, and M. Ippolito, “KiteGen project: Control as key technology for a quantum leap in wind energy generators,” in Proceedings of the American Control Conference, 2007. [10] L. Fagiano, M. Milanese, V. Razza, and M. Bonansone, “High-altitude Wind energy for sustainable marine transportation,” IEEE Trans. Intell. Transp. Syst., 2012. [11] J. Adhikari, I. V. Prasanna, and S. K. Panda, “Maximum power-point tracking of high altitude wind power generating system using optimal vector control technique,” in Proceedings of the International Conference on Power Electronics and Drive Systems, 2015. [12] K. Sanno and K. V. S. Rao, “Estimation of wind power extraction from kites flying at high altitudes,” in Proceedings of 2014 1st International Conference on Non Conventional Energy: Search for Clean and Safe Energy, ICONCE 2014, 2014. [13] L. Perković, P. Silva, M. Ban, N. Kranjčević, and N. Duić, “Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect,” Appl. Energy, vol. 101, pp. 151–160, Jan. 2013. [14] J. W. Kolar et al., “Conceptualization and multiobjective optimization of the electric system of an airborne wind turbine,” IEEE J. Emerg. Sel. Top. Power Electron., 2013. [15] L. Ramesh, A. Nalini, E. S. Percis, and Shadhik, “Investigation of harnessing high altitude tethered rotorcraft wind systems,” in IET Chennai 3rd International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2012), 2012, pp. 362–367. [16] J. Adhikari and S. K. Panda, “Generation and transmission,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 2, p. 459–470 of electrical energy in high–altitude wind, 2015. [17] G. Shrestha, H. Polinder, and J. A. Ferreira, “Scaling laws for direct drive generators in wind turbines,” 2009 IEEE Int. Electr. Mach. Drives Conf. IEMDC ’09, pp. 797–803, 2009. [18] H. Polinder, F. F. A. Van Der Pijl, G. J. De Vilder, and P. J. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 725–733, 2006. [19] A. Parviainen, M. Niemela, J. Pyrhonen, and J. Mantere, “Performance comparison between low-speed axial-flux and radial-flux permanent-magnet machines including mechanical constraints,” IEEE Int. Conf. Electr. Mach. Drives, 2005., pp. 1695–1702, 2005. [20] T. Wang and Q. Wang, “Optimization design of a permanent magnet synchronous generator for a potential energy recovery system,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 856–863, 2012. [21] P. Ragot, M. Markovic, and Y. Perriard, “Optimization of electric motor for a solar airplane application,” IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1053–1061, 2006. [22] D. Pavković, M. Hoić, J. Deur, and J. Petrić, “Energy storage systems sizing study for a high-altitude wind energy application,” Energy, 2014. [23] J. Adhikari, S. K. Panda, and A. K. Rathore, “Harnessing high altitude wind power using light gas filled blimp,” in IECON Proceedings (Industrial Electronics Conference), 2013. [24] S. K. Panda and J. Adhikari, “Overview of High Altitude Wind Energy Harvesting System.” [25] J. Adhikari, A. K. Rathore, and S. K. Panda, “Modelling, design and control of grid connected converter for high altitude wind power application,” in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), 2014, pp. 1775–1780. [26] J. Adhikari, A. K. Rathore, and S. K. Panda, “Modular interleaved ZVS current fed isolated DC-DC converter for harvesting high altitude wind power,” in IECON Proceedings (Industrial Electronics Conference), 2013. [27] J. Adhikari, A. K. Rathore, and S. K. Panda, “Comparison of ZVS based isolated DC-DC converters for high altitude wind power application,” in 2013 IEEE Innovative Smart Grid Technologies - Asia, ISGT Asia 2013, 2013. [28] J. Adhikari and S. K. Panda, “Ground-based step-down AC-AC power electronic converter for high altitude wind energy harvesting system,” in Proceedings, IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014. [29] J. Adhikari, Prasanna, G. Ponraj, and S. K. Panda, “Power conversion system for low power high altitude wind power generating system,” in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 637–644. [30] J. Adhikari, A. K. Rathore, and S. K. Panda, “Modelling, Design and Control of Grid Connected Converter for High Altitude Wind Power Application.” [31] P. Williams, B. Lansdorp, and W. Ockesl, “Optimal Crosswind Towing and Power Generation with Tethered Kites,” J. Guid. Control. Dyn., vol. 31, no. 1, pp. 81–93, Jan. 2008. [32] B. Houska and M. Diehl, “Robustness and stability optimization of power generating kite systems in a periodic pumping mode,” in Proceedings of the IEEE International Conference on Control Applications, 2010. [33] S. Mackertich and T. Das, “A quantitative energy and systems analysis framework for airborne wind energy conversion using autorotation,” in 2016 American Control Conference (ACC), 2016, pp. 4996–5001. [34] A. U. Zgraggen, L. Fagiano, and M. Morari, “Real-Time Optimization and Adaptation of the Crosswind Flight of Tethered Wings for Airborne Wind Energy,” IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 434–448, Mar. 2015. [35] M. Canale, L. Fagiano, M. Ippolito, and M. Milanese, “Control of tethered airfoils for a new class of wind energy generator,” in Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 4020–4026. [36] M. De Lellis, R. Saraiva, and A. Trofino, “Turning angle control of power kites for wind energy,” in Proceedings of the IEEE Conference on Decision and Control, 2013. [37] C. Novara, “Sparse set membership identification of nonlinear functions and application to fault detection,” Int. J. Adapt. Control Signal Process., vol. 30, no. 2, pp. 206–223, Feb. 2016. [38] A. Ilzhöfer, B. Houska, and M. Diehl, “Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators,” Int. J. Robust Nonlinear Control, vol. 17, no. 17, pp. 1590–1599, Nov. 2007. [39] L. Fagiano, M. Milanese, and D. Piga, “High-Altitude Wind Power Generation,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 168–180, Mar. 2010. [40] H. J. Ferreau, B. Houska, K. Geebelen, and M. Diehl, “Real-Time Control of a Kite-Model using an Auto-Generated Nonlinear MPC Algorithm,” IFAC Proc. Vol., vol. 44, no. 1, pp. 2488–2493, Jan. 2011. [41] M. Canale, L. Fagiano, and M. Milanese, “KiteGen: A revolution in wind energy generation,” Energy, vol. 34, no. 3, pp. 355–361, Mar. 2009. [42] C. Novara, L. Fagiano, and M. Milanese, “Direct data-driven inverse control of a power kite for high altitude wind energy conversion,” in 2011 IEEE International Conference on Control Applications (CCA), 2011, pp. 240–245. [43] J. H. Baayen and W. J. Ockels, “Tracking control with adaption of kites,” IET Control Theory Appl., vol. 6, no. 2, p. 20, 2010. [44] M. Ahmed, A. Hably, and S. Bacha, “Kite generator system periodic motion planning via virtual constraints,” in IECON Proceedings (Industrial Electronics Conference), 2013. [45] C. Canudas-De-Wit, “On the concept of virtual constraints as a tool for walking robot control and balancing,” Annu. Rev. Control, vol. 28, no. 2, pp. 157–166, 2004. [46] A. Shiriaev and C. Canudas-de-Wit, “Virtual constraints: a constructive tool for oribital stabilzation of underactuated nonlinear systems,” Pers. Commun., vol. 50, no. 1, pp. 1–12, 2003. [47] N. Rontsis, S. Costello, I. Lymperopoulos, and C. N. Jones, “Improved path following for kites with input delay compensation,” in 2015 54th IEEE Conference on Decision and Control (CDC), 2015, pp. 656–663. [48] Haocheng Li, D. J. Olinger, and M. A. Demetriou, “Attitude tracking control of an Airborne Wind Energy system,” in 2015 European Control Conference (ECC), 2015, pp. 1510–1515. [49] C. Jehle and R. Schmehl, “Applied Tracking Control for Kite Power Systems,” J. Guid. Control. Dyn., vol. 37, no. 4, pp. 1211–1222, Jul. 2014. [50] L. Fagiano, A. U. Zgraggen, M. Morari, and M. Khammash, “Automatic Crosswind Flight of Tethered Wings for Airborne Wind Energy: Modeling, Control Design, and Experimental Results,” IEEE Trans. Control Syst. Technol., vol. 22, no. 4, 2014. [51] U. Fechner and R. Schmehl, “Flight path control of kite power systems in a turbulent wind environment,” in Proceedings of the American Control Conference, 2016. [52] A. Hably, R. Lozano, M. Alamir, and J. Dumon, “Observer-based control of a tethered wing wind power system: indoor real-time experiment,” in 2013 American Control Conference, 2013, pp. 3473–3478. [53] A. Walsh and J. R. Forbes, “Modeling and control of a wind energy harvesting kite with flexible cables,” in 2015 American Control Conference (ACC), 2015, pp. 2383–2388. [54] M. Ahmed, A. Hably, and S. Bacha, “Power maximization of a closed-orbit kite generator system,” in IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 7717–7722. [55] S. Costello, G. François, and D. Bonvin, “A Directional Modifier-Adaptation Algorithm for Real-Time Optimization,” J. Process Control, vol. 39, pp. 64–76, Mar. 2016. [56] H. Li, D. J. Olinger, and M. A. Demetriou, “Control of an airborne wind energy system using an aircraft dynamics model,” in Proceedings of the American Control Conference, 2015. [57] I. Argatov, P. Rautakorpi, and R. Silvennoinen, “Estimation of the mechanical energy output of the kite wind generator,” Renew. Energy, vol. 34, no. 6, pp. 1525–1532, 2009. [58] J. Sternberg, B. Houska, and M. Diehl, “A Structure Exploiting Algorithm for Approximate Robust Optimal Control with Application to Power Generating Kites,” Proc. Am. Control Conf., pp. 2250–2255, 2012. [59] J. Gillis, J. Goos, K. Geebelen, J. Swevers, and M. Diehl, “Optimal periodic control of power harvesting tethered airplanes: How to fly fast without wind and without propellor?,” in 2012 American Control Conference (ACC), 2012, pp. 2527–2532. [60] M. S. Ahmed, A. Hably, and S. Bacha, “Kite generator system modeling and grid integration,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 968–976, 2013. [61] C. Vermillion, T. Grunnagle, R. Lim, and I. Kolmanovsky, “Model-based plant design and hierarchical control of a prototype lighter-than-air wind energy system, with experimental flight test results,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 531–542, 2014. [62] L. Fagiano, K. Huynh, B. Bamieh, and M. Khammash, “On Sensor Fusion for Airborne Wind Energy Systems,” IEEE Trans. Control Syst. Technol., vol. 22, no. 3, pp. 930–943, 2013. [63] L. Fagiano and T. Marks, “Design of a small-scale prototype for research in airborne wind energy,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 1, pp. 166–177, 2015. [64] M. Ahmed, A. Hably, S. Bacha, and A. Ovalle, “Kite generator system: Grid integration and validation,” IECON Proc. (Industrial Electron. Conf., vol. 40th Annua, pp. 2139–2145, 2014. [65] M. W. Isaacs, J. B. Hoagg, I. I. Hussein, and D. Olinger, “Retrospective cost adaptive control for a ground tethered energy system,” Proc. IEEE Conf. Decis. Control, pp. 824–829, 2011. [66] R. Lozano, J. Dumon, A. Hably, and M. Alamir, “Energy production control of an experimental kite system in presence of wind gusts,” IEEE Int. Conf. Intell. Robot. Syst., pp. 2452–2459, 2013. [67] Y. Terao and N. Sakagami, “A feasibility study on the ocean higher altitude strong wind energy utilization system,” in OCEANS 2014 - TAIPEI, 2014, pp. 1–7. [68] Pragallapati, VVSMR Raju, and SLV Ayyarao Tummala. "A new direct torque control for doubly fed induction generator for wind power generation." Proceedings of International Conference on Renewable Energy and Sustainable Energy ICRESE'13. 2013. [69] Alluri, Hemanth KR, Ayyarao SLV Tummala, and P. V. Ramanarao. "Performance of the Wind Farm for Various Faults." International Journal of Emerging Research in Management &Technology, vol. 5, (2016). [70] https://phys.org/news/2012-07-electricity-air.html |