Topic: Study contents of paper: A methodology for design, analysis and optimization of a vertical take-off system for rigid-wing airborne wind energy systems Niels Pynaert, Technische Universiteit Delft "This
research is focused on state-of-the-art analysis and review, sizing,
design analysis and simulation of different vertical take-off and
landing (VTOL) system concepts applicable for airborne wind energy
systems (AWES) launch mechanisms."
|
Send AWE notes and topic replies to editor@upperwindpower.com |
? What say we? |
|
Bibliography [1] Mirac Aksugur and Gokhan Inalhan. Design methodology of a hybrid propulsion driven electric powered miniature tailsitter unmanned aerial vehicle. Journal of Intelligent and Robotic Systems: Theory and Applications, 57(1-4):505–529, 2010. ISSN 09210296. doi: 10.1007/s10846-009-9368-0. [2] C. Ampatis and E. Papadopoulos. Parametric Design and Optimization of Multi-Rotor Aerial Vehi-cles. Springer Optimization and Its Applications, 91(3):1–25, 2014. ISSN 19316836. doi: 10.1007/ 978-3-319-04720-1_1. 3] Ozlem Armutcuoglu, Mehmet Serif Kavsaoglu, and Ozan Tekinalp. Tilt Duct Vertical Takeoff and Landing Uninhabited Aerial Vehicle Concept Design Study. Journal of Aircraft, 41(2):215–223, 2008. ISSN 0021-8669. doi: 10.2514/1.271. 4] Florian Bauer, Christoph M. Hackl, Keyue Smedley, and Ralph M. Kennel. Multicopter-Based Launching and Landing of Lift Power Kites. 2016. [5] RANDAL W. BEARD and TIMOTHY W. McLAIN. Small Unmanned Aircraft: Theory and Practice. [6] Dmitry Bershadsky, Steve Haviland, and Eric N. Johnson. Electric Multirotor UAV Propulsion System Sizing for Performance Prediction and Design Optimization. pages 1–22, 2016. doi: 10.2514/6.2016-0581. [7] E. Bontekoe. Up! How to Launch and Retrieve a Tethered Aircraft. Master of Science Thesis, TU Delft, Faculty of Aerospace Engineering, 2010. [8] Rieck Burkhard, Ranneberg Maximilion, Candade Ashwin, Bormann Alexander, and Skutnik Stefan. Comparison of Launching Landing Approaches. [9] R. W. Jr. Boswinkle C.C. Critzos, H.H. Heyson. Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0 degrees to 180 degrees. 1955. [10] D. Cheng, A.C. Charles, S. Srigrarom, and H. Hesse. Morphing Concept for Multirotor UAVs Enabling Sta-bility Augmentation and Multiple-Parcel Delivery. AIAA Science and Technology Forum and Exposition, 2019. [11] Antonello Cherubini, Andrea Papini, Rocco Vertechy, and Marco Fontana. Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 51:1461–1476, 2015. ISSN 18790690. doi: 10.1016/j.rser.2015.07.053. [12] Puspita Triana Dewi, Ghozali Suhariyanto Hadi, Muhammad Ramadhan Kusnaedi, Aris Budiyarto, and Agus Budiyono. Design of Separate Lift and Thrust Hybrid UAV. The Journal of Instrumentation, Automation and Systems, 2(2):45–51, 2018. doi: 10.21535/jias.v2i2.697. [13] Moritz Diehl. Airborne Wind Energy : Basic Concepts and Physical Foundations. pages 3–22. doi: 10.1007/978-3-642-39965-7. [14] L. Fagiano and S. Schnez. On the take-off of airborne wind energy systems based on rigid wings. Renewable Energy, 107:473–488, 2017. ISSN 18790682. doi: 10.1016/j.renene.2017.02.023. [15] L. Fagiano, E. Nguyen-Van, F. Rager, S. Schnez, and C. Ohler. Automatic Take-Off of a Tethered Aircraft for Airborne Wind Energy: Control Design and Experimental Results. IFAC-PapersOnLine, 50(1):11932– 11937, 2017. ISSN 24058963. doi: 10.1016/j.ifacol.2017.08.1456. [16] W. Froude. On the Elementary Relation Between Pitch, Slip, and Propulsive Efficiency. 1920. [17] Mauro Gatti and Fabrizio Giulietti. Preliminary design analysis methodology for electric multirotor. IFAC Proceedings Volumes (IFAC-PapersOnline), 2(PART 1):58–63, 2013. ISSN 14746670. doi: 10.3182/ 20131120-3-FR-4045.00038. [18] K. Geebelen, H. Ahmad, M. Vukov, S. Gros, J. Swevers, and M. Diehl. An experimental test set-up for launch/recovery of an Airborne Wind Energy (AWE) system. pages 4405–4410, 2014. doi: 10.1109/acc. 2012.6315033. [19] Licitra Giovanni. Identification and Optimization of an Airborne Wind Energy System. 2018. [20] Herman Glauert. Airplane Propellers. In: Aerodynamic Theory. Springer, Berlin, Heidelberg. ISBN 978-3-642-89630-9. [21] Jay Gundlach. Designing Unmanned Aircraft Systems: A Comprehensive Approach. 2014. [22] Ohad Gur and Aviv Rosen. Optimizing Electric Propulsion Systems for UAVs. (September 2008), 2012. doi: 10.2514/6.2008-5916. [23] M. Hepperle. Electric Flight – Potential and Limitations. Presented at the AVT-209 Workshop on Energy Efficient Aircraft Configurations, Technologies and Concepts of Operation, Sao José dos Campos, 2013. [24] John H Horlock. Actuator Disk Theory: Discontinuities in Thermo Fluid Dynamics. 1978. [25] J.C. van der Vaart E. de Weerdt C.C. de Visser A.A. in ’t veld E. Mooij J.A. Mulder, W.H.J.J. van Staveren. Flight Dynamics, Lecture notes. Delft University of Technology, 2013. [26] Haibo Jiang, Yanru Li, and Zhongqing Cheng. Relations of Lift and Drag Coefficients of Flow around Flat Plate. Trans Tech Publications, Switzerland, 2014. doi: 10.4028/www.scientific.net/AMM.518.161. [27] Andrew B. Lambe and Joaquim R. R. A. Martins. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Structural and Multidisciplinary Optimization, 46:273–284, 2012. doi: 10.1007/s00158-012-0763-y. [28] J. Gordon Leishman. Principles of Helicopter Aerodynamics. Cambridge Aerospace Series, 2002. [29] Miles L Loyd. Crosswind Kite Power. Journal of Energy, 4(3):106–111, 1980. [30] C.A. Luongo. Next Generation More-Electric Aircraft: A Potential Application for HTS Superconductors. IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 1055–1068, 2009. [31] Elena Malz, Jonas Koenemann, and Sebastian Gros. A reference model for airborne wind energy systems for optimization and control. 2018. [32] B.W. McCormick. Aerodynamics of V/STOL flight. New York, Academic Press. [33] Matthew McCrink and James W. Gregory. Blade Element Momentum Modeling of Low-Re Small UAS Electric Propulsion Systems. 33rd AIAA Applied Aerodynamics Conference, (June):1–23, 2015. doi: 10. 2514/6.2015-3296. URL http://arc.aiaa.org/doi/10.2514/6.2015-3296. [34] Koji Muraoka, Noriaki Okada, and Daisuke Kubo. Quad Tilt Wing VTOL UAV: Aerodynamic Characteristics and Prototype Flight. (April): 6–13, 2012. ISSN 2009-1834. doi: 10.2514/6.2009-1834. [35] Wayne Ong, Spot Srigrarom, and Henrik Hesse. Design Methodology for Heavy-Lift Unmanned Aerial Vehicles with Coaxial Rotors. 9781624105(January):7–11, 2019. doi: 10.2514/6.2019-2095. [36] Ugur Ozdemir, Yucel Orkut, Aktas Aslihan, and Vuruskan Yasin. Design of a commercial hybrid VTOL UAV system Design of a Commercial Hybrid VTOL UAV System. (May 2013), 2016. doi: 10.1007/s10846-013-9900-0. [37] Sebastian Rapp and Roland Schmehl. Vertical Takeoff and Landing of Flexible Wing Kite Power Systems. Journal of Guidance, Control, and Dynamics, 41(11):2386–2400, 2018. ISSN 0731-5090. doi: 10.2514/1.g003535. [38] Daniel P. Raymer. Aircraft Design: A Conceptual Approach ( Edition). (AIAA education series), 2006. [39] J. Roskam. Airplane design, part v: component weight estimation. Roskam Aviation Corporation, Ottawa, Kansas, page 85, 1985. [40] M. K. Rwigema. Propeller Blade Element Momentum Theory with Vortex Wake Deflection. International Congress of the Aeronautical Sciences, pages 1–9, 2010. URL http://www.ewp.rpi.edu/hartford/ {~}ernesto/S2013/MMEES/Papers/ENERGY/6AlternativeEnergy/McCosker/Rwigema2010.pdf. [41] Adnan S. Saeed, Ahmad Bani Younes, Chenxiao Cai, and Guowei Cai. A survey of hybrid Unmanned Aerial Vehicles. Progress in Aerospace Sciences, 98:91–105, 2018. ISSN 03760421. doi: 10.1016/j.paerosci.2018.03.007. [42] Watcharapol Saengphet and Chalothorn Thumthae. Conceptual Design of Fixed Wing-VTOL UAV for AED Transport. (December), 2016. [43] R. Schmehl. Airborne Wind Energy an introduction to an emerging technology, 2019. URL http://awesco.eu/awe-explained/#presently-pursued-concepts. [44] Brian L. Stevens, Frank L. Lewis, and Eric N. Johnson. Modeling and Simulation of Miniature Aerial Vehicles. 2015. [45] Roland Hugh Stone and K C Wong. Preliminary Design of a Tandem-Wing Tail-Sitter UAV Using Multi-Disciplinary Design Optimisation. International Aerospace Congress, (May):707–720, 1997. [46] B Theys and J De Schutter. Parameter selection method and performance assessment for the preliminary design of electrically powered transitioning VTOL UAVs. 2016. [47] B. Theys, G. Dimitriadis, P. Hendrick, and J. De Schutter. Experimental and numerical study of micro-aerial-vehicle propeller performance in oblique flow. Journal of Aircraft, 54(3):1076–1084, 2017. ISSN 00218669. doi: 10.2514/1.C033618. [48] Maxim Tyan, Nhu Van Nguyen, and Jae-woo Lee. A Hybrid VTOL-Fixed Wing Electric UAV Sizing Methodology Development. (October), 2016. [49] Maxim Tyan, Nhu Van Nguyen, Sangho Kim, and Jae Woo Lee. Comprehensive preliminary sizing/re-sizing method for a fixed wing – VTOL electric UAV. Aerospace Science and Technology, 71, 2017. ISSN 12709638. doi: 10.1016/j.ast.2017.09.008. [50] Justin Winslow, Vikram Hrishikeshavan, and Inderjit Chopra. Design Methodology for Small-Scale Un-manned Quadrotors. Journal of Aircraft, (January):1–9, 2017. ISSN 0021-8669. doi: 10.2514/1.c034483. [51] M. Zanon, S. Gros, and M. Diehl. Rotational start-up of tethered airplanes based on nonlinear mpc and mhe. |