Topic:  Discuss contents of  paper:
Optimal Control of a Rigid-Wing Rotary Kite System for Airborne Wind Energy
March 2018. Conference: European Control Conference 2018  At: Limassol, Cyprus.  Jochem De Schutter, Rachel Leuthold, Moritz Diehl          [this duplicates old forum 23410 but we continue discussion]
Send AWE notes and topic replies to editor@upperwindpower.com
???
REFERENCES
[1]  HSL.  A  collection  of  Fortran  codes  for  large  scale  scientific  computation. http://www.hsl.rl.ac.uk , 2011.

[2]  J. Andersson,  J. Akesson, and M. Diehl. CasADi  –  a  symbolic package  for  automatic  differentiation  and  optimal  control.  In Recent Advances in Algorithmic Differentiation, Volume 87 of Lecture Notes in Computational Science and Engineering, pages 297–307. Springer, 2012.

[3]  C. Archer and M. Jacobson.  Geographical and seasonal variability of the global practical wind resources. Applied Geography, 45:119–130,2013.

[4]  J. Baumgarte.  Stabilization of Constraints and Integrals of Motion in Dynamical Systems. Computer Methods in Applied  Mechanics and Engineering, 1(1):1–16, 1972.

[5]  R. Bosman,  V. Reid,  M. Vlasblom, and P. Smeets.   Airborne wind energy tethers with high-modulus polyethylene fibers.  In Airborne Wind Energy. Springer Berlin / Heidelberg, 2013.

[6]  M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes.  PhD thesis, University of Heidelberg, 2001.

[7]  M. Diehl. Airborne wind energy: Basic concepts and physical foundations.  In Airborne Wind Energy, pages 3–22. Springer Berlin Heidelberg, 2013.

[8]  L. Goldstein. Rotor Kite Wind Energy System and More, 2015.

[9]  S. Gros and M. Diehl. Modeling of airborne wind energy systems in natural coordinates.  In Airborne Wind Energy. Springer-Verlag Berlin Heidelberg, 2013.

[10]  S. Gros and M. Zanon.  Numerical optimal control with periodicity constraints in the presence of invariants. IEEE Transactions on Automatic Control (under revision), 2018.

[11]  B. Houska and M. Diehl.  Optimal control for power generating kites.In Proceedings of the European Control Conference (ECC), pages 3560–3567, Kos, Greece, 2007.

[12]  R. Leuthold, S. Gros, and M. Diehl.  Induction in optimal control of multiple-kite  airborne wind energy systems.  In Proceedings  of  20th IFAC World Congress, Toulouse, France, 2017. 

[13]  M. Loyd. Crosswind Kite Power. Journal of Energy, 4(3):106–111, July 1980.

[14]  M. MInus and S. Kumar.  The processing, properties, and structure of carbon fibers. The Journal of The Minerals, Metals & Materials Society, Volume 57, Issue 2, pp 5258, 2005.

[15]  B. Roberts, D. Shepard, K. Caldeira, M. Cannon, D. Eccles., A. Grenier,  and  J. Freidin.  Harnessing  High-Altitude Wind Power. IEEE Transaction on Energy Conversion, 22:136–144, 2007.

[16]  G. Vergnano.  Rotokite: A different approach for the  exploitation of the high-altitude wind.  In Poster session presented at Airborne WindEnergy Conference 2013, Berlin, 2013.

[17]  C. Vermillion, B. Glass, and A. Rein. Lighther-Than-Air Wind Energy Systems.  In U. Ahrens, M. Diehl, and R. Schmehl, editors, AirborneWind Energy. Springer, 2013.

[18]  R. von Mises. Theory of flight.  New York: Dover, 1959.

[19]  A. Wächter and L. T. Biegler. On the implementation of an interior-point  filter  line-search  algorithm  for  large-scale  nonlinear  programming.  Mathematical Programming, 106(1):25–57, 2006.

[20]  M. Zanon,  S. Gros,  J. Andersson, and  M. Diehl.  Airborne  wind energy based on dual airfoils. IEEE Transactions on Control Systems Technology, 21:1215–1222, July 2013.

[21]  M. Zanon,  S. Gros,  J. Meyers,  and  M. Diehl. Airborne  wind energy: Airfoil-airmass interaction.  In Proceedings of the IFAC World Congress, pages 5814–5819, 2014.