Topic: Discuss contents of paper: Optimal Control of a Rigid-Wing Rotary Kite System for Airborne Wind Energy March 2018. Conference: European Control Conference 2018 At: Limassol, Cyprus. Jochem De Schutter, Rachel Leuthold, Moritz Diehl [this duplicates old forum 23410 but we continue discussion] |
Send AWE notes and topic replies to editor@upperwindpower.com |
??? |
REFERENCES [1] HSL. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk , 2011. [2] J. Andersson, J. Akesson, and M. Diehl. CasADi – a symbolic package for automatic differentiation and optimal control. In Recent Advances in Algorithmic Differentiation, Volume 87 of Lecture Notes in Computational Science and Engineering, pages 297–307. Springer, 2012. [3] C. Archer and M. Jacobson. Geographical and seasonal variability of the global practical wind resources. Applied Geography, 45:119–130,2013. [4] J. Baumgarte. Stabilization of Constraints and Integrals of Motion in Dynamical Systems. Computer Methods in Applied Mechanics and Engineering, 1(1):1–16, 1972. [5] R. Bosman, V. Reid, M. Vlasblom, and P. Smeets. Airborne wind energy tethers with high-modulus polyethylene fibers. In Airborne Wind Energy. Springer Berlin / Heidelberg, 2013. [6] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis, University of Heidelberg, 2001. [7] M. Diehl. Airborne wind energy: Basic concepts and physical foundations. In Airborne Wind Energy, pages 3–22. Springer Berlin Heidelberg, 2013. [8] L. Goldstein. Rotor Kite Wind Energy System and More, 2015. [9] S. Gros and M. Diehl. Modeling of airborne wind energy systems in natural coordinates. In Airborne Wind Energy. Springer-Verlag Berlin Heidelberg, 2013. [10] S. Gros and M. Zanon. Numerical optimal control with periodicity constraints in the presence of invariants. IEEE Transactions on Automatic Control (under revision), 2018. [11] B. Houska and M. Diehl. Optimal control for power generating kites.In Proceedings of the European Control Conference (ECC), pages 3560–3567, Kos, Greece, 2007. [12] R. Leuthold, S. Gros, and M. Diehl. Induction in optimal control of multiple-kite airborne wind energy systems. In Proceedings of 20th IFAC World Congress, Toulouse, France, 2017. [13] M. Loyd. Crosswind Kite Power. Journal of Energy, 4(3):106–111, July 1980. [14] M. MInus and S. Kumar. The processing, properties, and structure of carbon fibers. The Journal of The Minerals, Metals & Materials Society, Volume 57, Issue 2, pp 5258, 2005. [15] B. Roberts, D. Shepard, K. Caldeira, M. Cannon, D. Eccles., A. Grenier, and J. Freidin. Harnessing High-Altitude Wind Power. IEEE Transaction on Energy Conversion, 22:136–144, 2007. [16] G. Vergnano. Rotokite: A different approach for the exploitation of the high-altitude wind. In Poster session presented at Airborne WindEnergy Conference 2013, Berlin, 2013. [17] C. Vermillion, B. Glass, and A. Rein. Lighther-Than-Air Wind Energy Systems. In U. Ahrens, M. Diehl, and R. Schmehl, editors, AirborneWind Energy. Springer, 2013. [18] R. von Mises. Theory of flight. New York: Dover, 1959. [19] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006. [20] M. Zanon, S. Gros, J. Andersson, and M. Diehl. Airborne wind energy based on dual airfoils. IEEE Transactions on Control Systems Technology, 21:1215–1222, July 2013. [21] M. Zanon, S. Gros, J. Meyers, and M. Diehl. Airborne wind energy: Airfoil-airmass interaction. In Proceedings of the IFAC World Congress, pages 5814–5819, 2014. |