Forum Index of Topics

Topic for open discussion:
   Gonzalo Sanchez-Arriaga and AWE
Send AWE notes and topic replies to editor@upperwindpower.com
?next?


References re:  Dynamics and control of single-line kites
Aeronautical Journal, 2006 | journal-article

1. Glauert, H., The stability of a body towed by a light wire, RM, 1930, 1312, Aeronautical Research Council, UK.      PDF
2. Bairstow, L., Relf, E.F. and Jones, R., The stability of kite balloons: mathematical investigation, RM, December 1915, 208, Aeronautical Research Council, UK.Google Scholar
3. Bryant, L.W., Brown, W.S. and Sweeting, N.E., Collected research on the stability of kites and towed gliders, RM, February 1942, 2303, Aeronautical Research Council, National Physical Lab, Teddington Middlesex, UK.Google Scholar
4. Adomaitis, R.A., Kites and bifurcation theory, SIAM Review, September 1989, 31, (3), pp 478483.CrossRef | Google Scholar
5. Alexander, K. and Stevenson, J., Kite equilibrium and bridle length, Aeronaut J, September 2001, pp 535541.CrossRef | Google Scholar
6. Veldman, S., Bersee, H., Vermeeren, C. and Bergsma, O., Conceptual design of a high altitude kite, 2002, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, 22-25 April, 2002.Google Scholar
7. Diehl, M., Magni, L. and De Nicolao, G., Efficient NMPC of unstable periodic systems using approximate infinite horizon closed loop costing, Annual Review in Control, 2004, 28, pp 3745.CrossRef | Google Scholar
8. Delaurier, J.D., Influence of ballonet motions on the longitudinal stability of tethered aerostats, J Aircr, May 1980, 17, (5), pp 305312.CrossRef | Google Scholar
9. Fluid forces and moments on flat plates, September 1970, ESDU International, Engineering Science Data Unit 70015.Google Scholar
10. Doedel, E.J., Champmeys, A.R., Fairgrieve, T.F., Kuznetsov, Y., Sanstede, B., Wang, X.J., AUTO 97: Continuation and bifurcation software for ordinary differential equations, 1997, pub/doedel/auto at ftp.cs.concordia.ca.Google Scholar
11. Ermentrout, B. Xppaut, Dynamical systems software with continuation and bifurcation capabilities, 2000, /pub/bardware at ftp.math.pit.edu.Google Scholar