Home of AWEC2020 Teleconference

AWEC2020 Teleconference Papers

  • --accepting and organizing peer-reviewed online work that affects AWE substantially!
Send AWE files, posters, papers, video, ...., notes and topic replies to editor@upperwindpower.com
KitePower Laddermill - TU Delft         kitepower.eu/publications.html

2020 

M. A. Rushdi, A. A. Rushdi, T. N. Dief, A. M. Halawa, S. Yoshida, R. Schmehl: "Power Prediction using Multivariate Machine Learning in Airborne Wind Energy Systems". Energies, under review, 2020.

M.A. Rushdi, R. Schmehl, T.N. Dief, S. Yoshida, D. Fujimoto, K. Sawano: "Towing test data of the Kyushu University kite system". 4TU.Centre for Research Data, Dataset, 2020. doi:10.4121/uuid:c3cee766-2804-4c00-924f-8a9f6c8122fc.

R. Borobia-Moreno, D. Ramiro-Rebollo, R. Schmehl, G. Sánchez-Arriaga: "Identication of kite aerodynamic characteristics using the estimation before modeling technique". Wind Energy, under review, 2020.

S. Rapp, R. Schmehl: "Enhancing Control System Resilience for Airborne Wind Energy Systems Through Upset Condition Avoidance". AIAA Journal of Guidance, Control and Dynamics, under review, 2020. arxiv:2004.02730 [eess.SY].

N. Krishnan, A. Viré, R. Schmehl, G. van Bussel: "An immersed boundary method based on domain decomposition". Computers & Fluids, pp. 104500, 2020. doi:10.1016/j.compfluid.2020.104500.

M. Schelbergen, P. C. Kalverla, R. Schmehl, S. J. Watson: "Clustering wind profile shapes to estimate airborne wind energy production". Wind Energy Science Discussions, under review, 2020. doi:10.5194/wes-2019-108.

T. N. Dief, U. Fechner, R. Schmehl, S. Yoshida, M. A. Rushdi: "Adaptive Flight Path Control of Airborne Wind Energy Systems". Energies, Vol. 13, No. 3, 2020. doi:10.3390/en13030667

A. A. Candade, M. Ranneberg, R. Schmehl: "Structural Analysis and Optimization of a Tethered Swept Wing for Airborne Wind Energy Generation". Wind Energy, 2020. doi:10.1002/we.2469.

M. A. Rushdi, A. Hussein, T. N. Dief, S. Yoshida, R. Schmehl: "Simulation of the Transition Phase for an Optimally-Controlled Tethered VTOL Rigid Aircraft for AirborneWind Energy Generation". AIAA 2020-1243, AIAA Scitech 2020 Forum, Orlando, FL, 6-10 January 2020. doi:10.2514/6.2020-1243. PDF

Design Optimization and Sizing for Fly-Gen Airborne Wind Energy Systems,  June 2020, DOI: 10.3390/automation1010001, LicenseCC BY 4.0; Mark Aull, Andy Stough, Kelly Cohen.

Power Generation Using Kites in a GroundGen Airborne Wind Energy System: A Numerical Study, May 2020, Journal of Energy Resources Technology 142(6):061306, DOI: 10.1115/1.4045700]; Alireza Mahdavi Nejad, Gretar Tryggvason.

Control of a Rigid Wing Pumping Airborne Wind Energy System in all Operational Phases, June 2020, Lab: Aldo Cattano's Lab; Davide Todeschini, Lorenzo Fagiano,Claudio MicheliAldo.

Top-level rotor optimisations based on actuator disc theory, June 2020, DOI: 10.5194/wes-5-807-2020, LicenseCC BY 4.0, Peter Jamieson.

Design of a Trajectory Control with Minimum Energy Consumption for a Kite Power System, June 2020, DOI: 10.1007/978-981-15-6113-9_76, n book: Cognitive Cities, Yung-Chia Hsiao.

Unsteady Aerodynamic Analysis of Wind Harvesting Aircraft
2020-1.  Judd Mehr, duardo Alvarez, Andrew Ning  -------------------
"wind harvesting aircraft, or windcraft for short," [bold added]

A. Schanen, J. Dumon, N. Meslem and A. Hably, "Take-off and landing of an AWE system using a multicopter," 2020 Americanhttps://en.wikipedia.org/wiki/Dimensionless_physical_constanthttps://www.britannica.com/science/Plancks-constant Control Conference (ACC), Denver, CO, USA, 2020, pp. 3846-3851, doi: 10.23919/ACC45564.2020.9148035.  [[lpaywall yet]]

Single Skin Kite Airfoil Optimization for AWES. Coenen, Roger (TU Delft Aerospace Engineering). Contributor: Schmehl, Roland (mentor). 
The embargo date is 2020-12-21
http://resolver.tudelft.nl/uuid:fdcf8423-11f0-4b33-956e-3e761635ac41

Adaptive Flight Path Control of Airborne Wind Energy Systems   

Towing Test Data Set of the Kyushu University Kite System   

The Influence of Tether Sag on Airborne Wind Energy Generation 

Presented in Torque 2020 Conference, September 28-Oct 2
 
The Science of Making Torque from Wind (TORQUE 2020) 28 September – 2 October 2020, The Netherlands (online)  
Below is a selection from a wider offering at https://iopscience.iop.org/issue/1742-6596/1618/3
  1. Tensile rotary power transmission model development for airborne wind energy systems   
  2. Modal Analysis of a Quad-Rotor Wind Turbine    
  3. Validation of the quasi-steady performance model for pumping airborne wind energy systems    
  4. Energy harvesting via co-locating horizontal- and vertical-axis wind turbines    
  5. The Influence of Tether Sag on Airborne Wind Energy Generation    
  6. Reynolds-averaged Navier-Stokes simulations of the flow past a leading edge inflatable wing for airborne wind energy applications    
  7. Simplified approach for the optimal number of rotors and support structure design of a multi rotor wind turbine system   
  8. An engineering model for the induction of crosswind kite power systems   
  9. Comparing blade-element theory and vortex computations intended for modelling of yaw aerodynamics of a tethered rotorcraft
  10. Multi-rotor Wind Farm Layout Optimization   
  11. Aero-structural Design of Composite Wings for Airborne Wind Energy Applications   
  12. Steady-state aeroelasticity of a ram-air wing for airborne wind energy applications   
  13. Reference Design and Simulation Framework of a Multi-Megawatt Airborne Wind Energy System    
  14. Flight Anomaly Detection for Airborne Wind Energy Systems  
  15. Aerodynamic behavior of an airfoil under extreme wind conditions